\qquad
\qquad
\qquad
Section's Number: \qquad

(Q1) Bleach Analysis

A $10.0-\mathrm{mL}$ volume of Ultra Bleach is diluted to 100 mL in a volumetric ask. A $25.0-\mathrm{mL}$ sample of this solution is analyzed according to the procedure in the bleach analysis experiment. Given that 30.75 mL of $0.135 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are needed to reach the stoichiometric point, answer the following questions.
a- How many grams of available Cl_{2} are in the titrated sample?
b- How many grams of Ultra Bleach are analyzed? Assume that the density of bleach is $1.084 \mathrm{~g} / \mathrm{mL}$.
c- Calculate the percent available chlorine in the Ultra Bleach.

(Q2) Molar mass of a solid

 4 PointsA 0.194-g sample of a nonvolatile solid solute dissolves in 9.82 g of cyclohexane $\left(\mathrm{k}_{\mathrm{f}}=20.0 \mathrm{C}^{\circ} . \mathrm{kg} / \mathrm{mol}\right)$. If the change in the freezing point of the solution is $2.94 \mathrm{C}^{\circ}$, Calculate the molar mass of the solute?

Data in the following table were obtained for the titration of a $0.312-\mathrm{g}$ sample of a solid, monoprotic weak acid with a 0.15 M KOH solution. Plot The titration curve.

$V_{\text {KOH }}$ added (mL)		pH
0.00		1.96
2.00		2.22
4.00		2.46
7.00		2.77
10.00		3.06
12.00		3.29
14.00		3.60
16.00		4.26
17.00		11.08
18.00		11.67
20.00		12.05
25.00		12.40

a- What is the molar mass of the solid weak acid?
b- What is the pk_{a} of the weak acid?

(Q4) LeChatelier's principle

6 Points
1- Give an example of a buffer system and explain how it works?

2-The following chemical equilibria are studied in this experiment, indicate the direction, left or right, of the equilibrium shift when the accompanying stress is applied to the system.
a. $\mathrm{NH}_{3}(a q)$ is added to $\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{AgCl}(s)$
b. $\mathrm{HNO}_{3}(a q)$ is added to $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$
e. $\mathrm{KOH}(a q)$ is added to $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}(a q)$
b- Consider the following acids $\mathrm{HCl}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$, List the above acids in order of decreasing reaction rate with magnesium
\qquad $>$ \qquad $>$ \qquad > \qquad
(Q6) Alkalinity of Water Source 5 Points

A- Define the alkalinity of water?

B- A chemist titrates a $50.0-\mathrm{mL}$ water sample to the methyl orange endpoint with 24 mL of a 0.0120 M HCl standard solution, What is the "T" alkalinity of the solution expressed in ppm CaCO_{3} ? (Assume density $=1.00 \mathrm{~g} / \mathrm{mL}$)

C- If 10 ml of a 0.0120 M HCl standard solution was needed to titrate the above sample to the Phenolphthalein endpoint what type of ions contributing to alkalinity of water does the above sample have?

A saturated solution of magnesium hydroxide $\mathrm{Mg}(\mathrm{OH})_{2}$ is prepared and the excess solid magnesium hydroxide is allowed to settle. A $25.0-\mathrm{mL}$ aliquot of the saturated solution is withdrawn and transferred to an Erlenmeyer ask, and two drops of methyl orange indicator are added. A 0.00053 M HCl solution (titrant) is dispensed from a buret into the solution (analyte). The solution turns from yellow to a very faint red-orange after the addition of 13.2 mL .
a. What is the molar solubility of magnesium hydroxide?
b. What is the solubility product, $K \mathrm{sp}$, for magnesium hydroxide?

(Q7) Galvanic Cell

4 Points
1-Draw an example galvanic cell (show all parts) make sure to properly label the reactions at the cathode and anode, the flow of the electrons and ions?

2-Explain how is electrical neutrality maintained in each half-cell?

